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Main objective:
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Mikel Artetxe:

An Effective Approach to Unsupervised Machine 
Translation (2019)
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3 main reasons:

 

× Promising results
× Only monolingual corpora needed
× Good results on high resourced languages

× Experiment on low resourced languages
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Monoses
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Monoses
https://github.com/artetxem/monoses

× Hybrid approach:
× Unsupervised MT for initialization
× Dual NMT model trained through iterative-backtranslation

× Interesting results:
× WMT-14

× FR-EN: 33.5 | EN-FR: 36.2
× DE-EN: 27.0 | EN-DE: 22.5
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Monoses
https://github.com/artetxem/monoses

× The process is divided in 10 steps

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10

Used Software (II)
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Monoses
https://github.com/artetxem/monoses

Used Software (II)

× Added features:
× Domain-specific corpus addition 
× BPE application from begining
× Oversampling for domain-specific corpus
× Continue in a previous iteration (SMT)
× Continue in a previous iteration (NMT)
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× 12 models:
× 6 domains:

× General domain
× Newswire domain
× Financial domain
× Legal domain
× Biomedical domain
× Customer support domain
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× 11 languages:
× English
× Basque
× German
× Finnish
× Latvian
× Georgian
× Kazakh
× Ukrainian
× Catalan
× Norwegian
× Spanish
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× General domain:
× English-Catalan
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× General domain:
× English-Catalan

× English:
× 149M sentences (OSCAR + Newscrawl)

× Catalan:
× 72M sentences (MT4All)
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× Newswire domain:
× English-Basque

× English:
× 149M sentences (OSCAR + Newscrawl)

× Basque:
× 18M sentences (OSCAR + MT4All + Elhuyar)
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× Biomedical domain:
× English-Spanish
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× Biomedical domain:
× English-Spanish

× English:
× 75 M sentences (MT4All)

× Spanish:
× 41M sentences (MT4All)
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× Customer support domain:
× English-Spanish
× English-German
× English-Norwegian
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× English:
× 149M sentences (OSCAR + Newscrawl)
× 6M sentences (MT4All) 

× Spanish:
× 131M sentences (OSCAR)
× 998K sentences (MT4All)

× German:
× 157M sentences (OSCAR)
× 5M sentences (MT4All)

× Norwegian:
× 31M sentences (OSCAR)
× 3M sentences (MT4All)
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× English:
× 149M sentences (OSCAR + Newscrawl)
× 6M sentences (MT4All) x 4 (Oversampling)

× Spanish:
× 131M sentences (OSCAR)
× 998K sentences (MT4All) x 6 (Oversampling)

× German:
× 157M sentences (OSCAR)
× 5M sentences (MT4All) x 4 (Oversampling)

× Norwegian:
× 31M sentences (OSCAR)
× 3M sentences (MT4All) x 6 (Oversampling)
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× Legal domain:
× English-Georgian
× English-Kazakh
× English-Ukrainian



Model Building (VII)

38

× English:
× 149M sentences (OSCAR + Newscrawl)
× 147K sentences (MT4All) 

× Georgian:
× 5M sentences (OSCAR)
× 203K sentences (MT4All)

× Kazakh:
× 9M sentences (OSCAR)
× 124K sentences (MT4All)

× Ukrainian:
× 84M sentences (OSCAR)
× 7M sentences (MT4All)
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× English:
× 149M sentences (OSCAR + Newscrawl)
× 147K sentences (MT4All) x 8 (Oversampling)

× Georgian:
× 5M sentences (OSCAR)
× 203K sentences (MT4All) x 8 (Oversampling)

× Kazakh:
× 9M sentences (OSCAR)
× 124K sentences (MT4All) x 8 (Oversampling)

× Ukrainian:
× 84M sentences (OSCAR)
× 7M sentences (MT4All) x 4 (Oversampling)
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× Financial domain:
× English-Latvian
× English-Finnish
× English-Norwegian
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× English:
× 149M sentences (OSCAR + Newscrawl)
× 3M sentences (MT4All)

× Latvian:
× 14M sentences (OSCAR)
× 480K sentences (MT4All)

× Finnish:
× 112M sentences (OSCAR)
× 3M sentences (MT4All)

× Norwegian:
× 31M sentences (OSCAR)
× 5M sentences (MT4All)
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× English:
× 149M sentences (OSCAR + Newscrawl)
× 3M sentences (MT4All) x 6 (Oversampling)

× Latvian:
× 14M sentences (OSCAR)
× 480K sentences (MT4All) x 8 (Oversampling)

× Finnish:
× 112M sentences (OSCAR)
× 3M sentences (MT4All) x 6 (Oversampling)

× Norwegian:
× 31M sentences (OSCAR)
× 5M sentences (MT4All) x 4 (Oversampling)
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× 4 GPUs used to train each model:
× NVIDIA V100 (Volta) 16GB

× 80 CPUs:
× IBM Power9 8335-GTH

× 10 days to train each model (average):
× 7 days for SMT model
× 3 days for NMT model
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Newswire domain

EN-EU EN-EU (BPE)

5.1 9.0

EU-EN EU-EN (BPE)

12.1 16.0

Sacrebleu
https://github.com/mjpost/sacrebleu

EU = Basque

https://github.com/mjpost/sacrebleu
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Financial domain

EN-LV EN-FI EN-FI (BPE) EN-NO

24.7 11.1 17.5 27.5

LV-EN FI-EN FI-EN (BPE) NO-EN

15.1 8.8 21.6 23.4

LV = Latvian
FI = Finnish
NO = Norwegian
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Legal domain

EN-KA EN-KK EN-UK

12.0 6.4 14.2

KA-ES KK-EN UK-EN

18.6 7.7 15.4

KA = Georgian
KK = Kazakh
UK = Ukrainian
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× Good results
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× Is the application of BPE beneficial for morphologically not rich 
languages?
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× Is the application of BPE beneficial for morphologically not rich 
languages?

× What size of domain-specific corpus can we consider large enough to 
train without mixing it with a general domain corpus?

× When domain-specific corpus is big
× Is it beneficial to mix it with a general domain corpus?



Thanks!
Any questions?

You can find me at:

iakes.goenaga@ehu.eus
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