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Mikel Artetxe:

An Effective Approach to Unsupervised Machine
Translation (2019)
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3 main reasons:

X Promising results
X Only monolingual corpora needed
X Good results on high resourced languages
X Experiment on low resourced languages
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Monoses
https://github.com/artetxem/monoses

% Hybrid approach:
x  Unsupervised MT for initialization T
% Dual NMT model trained through iterative- backtranslabon

% Interesting results:
x  WMT-14
x  FR-EN:33.5 | EN-FR:36.2
x DE-EN:27.0| EN-DE: 22.5
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Monoses
https://github.com/artetxem/monoses

% The process is divided in 10 steps

Stepl Step2 Step3 Step4  Step5  Stepé6 Step7  Step8 Step9  Stepl0
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Monoses
https://github.com/artetxem/monoses

x Added features: -y
» Domain-specific corpus addition @

BPE application from begining @ 4
Oversampling for domain-specific corpus’,@“
Continue in a previous iteration (SMT) -
Continue in a previous iteration (NMT)

X X X X
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x 12 models:

X  6domains:
General domain
Newswire domain
Financial domain
Legal domain
Biomedical domain
Customer support domain

X X X X X X
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x 11 languages:
% English
Basque
German
Finnish
Latvian
Georgian
Kazakh
Ukrainian
Catalan
Norwegian
Spanish

X X X X X X X X X X
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x  General domain:
% English-Catalan

% English:

x  149M sentences (OSCAR + Newscrawl)
x  Catalan:

x 7/2M sentences (MT4All)
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x  Newswire domain:
% English-Basque

% English:
x  149M sentences (OSCAR + Newscrawl)
X Basque:

x  18M sentences (OSCAR + MT4All + Elhuyar)
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% Biomedical domain:
% English-Spanish

% English:

x 75 Msentences (MT4AIl)
X Spanish:

x  41M sentences (MT4All)
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x  English:
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x 147K sentences (MT4All)
x (Georgian:
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x 4 GPUs used to train each model:
x  NVIDIAV100 (Volta) 16GB
x 80 CPUs:
x |IBM Power9? 8335-GTH
x 10 days to train each model (average):
x /daysfor SMT model
x 3 daysfor NMT model
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ResUlts

EN-EU EN-EU (BPE)
51 90
EU-EN EU-EN (BPE)
12.1 16.0
Sacrebleu EU = Basque

https://github.com/mjpost/sacrebleu
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ResUlts

EN-LV EN-FI | EN-FI(BPE) | EN-NO
24.7 111 17.5 27.5
LV-EN FI-EN | FI-EN(BPE) | NO-EN
15.1 8.8 21657 | 234
LV = Latvian
FI = Finnish

NO = Norwegian




ResUlts

EN-KA EN-KK EN-UK
12.0 6.4 14.2
KA-ES KK-EN UK-EN
18.6 7.7 154
KA = Georgian
KK = Kazakh

UK = Ukrainian
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Unanswered Questions

X

|s the application of BPE beneficial for morphologically not rich

languages?

What size of domain-specific corpus can we consider Iarge e

train without mixing it with a general domain corpus?

When domain-specific corpus is big
< |sit beneficial to mix it with a general domain corpus? .



Thanks!

Any questions?

You can find me at:
iakes.goenaga@ehu.eus




