# Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings

Marcely Zanon Boito, Bolaji Yusuf, Lucas Ondel, Aline Villavicencio, Laurent Besacier















# INTRODUCTION

## **Speech Technologies for Low-resource Languages**

- Most of current speech technology is developed in a fraction of the existing languages and dialects ("high-resource languages") [1]
- Pipelines based on text exclude oral languages
  - "Most of the world's languages are not actively written, even the ones with an official writing system" [15]
- This work focuses on low-resource speech processing:
  - Our goal: performing unsupervised word segmentation from speech







## **Unsupervised Word Segmentation (UWS) from speech**

**Example:** Let's imagine the speech utterance for "Hello my friend".



## **Unsupervised Word Segmentation (UWS) from speech**

We want a system which outputs time stamps corresponding to boundaries.



## **UWS for Language Documentation**

- Small size (difficult to collect)
- Often lack written form (oral-tradition languages)
- Parallel information (translations instead of transcriptions)



**Figure:** A field linguist recording utterances from a native speaker.



#### **Translations**

to a high-resource language [2]

#### 1. Introduction

**Unsupervised Word Segmentation from Speech with Attention** 



#### 1. Introduction

#### Since then...



#### This work: Revising the Pipeline



#### This work: A Revision of this Pipeline



#### This work: A Revision of this Pipeline



# SPEECH DISCRETIZATION (SD)

#### **Starting point: Producing Discrete Speech Units**



**GOAL:** To discretize (represent, summarize) the input speech using a collection of **discrete speech units** 

- Low-resource settings (4-5 hours of speech)
- No access to transcription

#### **Speech Discretization (SD) Models**

- Bayesian Generative Models (AUD):
  - 1. HMM/GMM (HMM): Every possible sound can be a unit [11]
  - 2. Subspace HMM (SHMM): Prior over a phonetic subspace [7]
  - 3. Hierarchical Subspace HMM (H-SHMM): Subspace adaptation from different languages for unit prediction [8]

#### **Speech Discretization (SD) Models**

- Bayesian Generative Models (AUD):
  - 1. HMM/GMM (HMM): Every possible sound can be a unit [11]
  - 2. Subspace HMM (SHMM): Prior over a phonetic subspace [7]
  - 3. Hierarchical Subspace HMM (H-SHMM): Subspace adaptation from different languages for unit prediction [8]
- Vector Quantization (VQ) Approaches:
  - 1. VQ-Variational Auto-Encoder (VAE): inspired by dimensionality reduction architectures [9]
  - 2. VQ-WAV2VEC: inspired by self-supervised models trained with a context-prediction loss [10]

#### **Next Step: Apply Segmentation!**



## **Studying the SD Representation**

**Example:** The same sentence, two approaches

True Boundary ————Output Boundary ————



# **UWS RESULTS**

#### **Results for Mboshi**

- Topline: phonemic transcription
- 5 models, 6 setups
  - **1.** HMM
  - 2. SHMM
  - 3. H-SHMM
  - 4. VQ-VAE
  - VQ-WAV2VECV=16
  - 6. VQ-WAV2VEC V=36



**Figure:** Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

#### **Results for Mboshi**

- We notice a drop in performance, but we still successfully generate segmentation
- Bilingual UWS is competitive against Monolingual UWS
- All languages tested followed the same trend



**Figure:** Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

#### **Results for Mboshi**

- Bayesian models are the most exploitable, in special SHMM and H-SHMM
- VQ-models are difficult to directly exploit for our task
  - Also verified recently in Kamper and Nieker [14]
  - An extra step of post-treatment might be necessary



**Figure:** Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

### Results for the MASS Languages (FI, HU, RO, RU)

- Results only for Bayesian SD due to the excessive output discretization length for neural
- Results follow the same trend from the Mboshi language: Bilingual UWS is competitive against Monolingual UWS.

|        | FI                 | HU                 | RO                 | RU                        |
|--------|--------------------|--------------------|--------------------|---------------------------|
| нмм    | 45.6   <b>53.4</b> | 49.9   <b>51.2</b> | 53.5   <b>56.6</b> | 47.1   54.9               |
| SHMM   | 49.0   <b>56.0</b> | 52.3   <b>53.9</b> | 53.5   57.7        | 50.5   <b>57.7</b>        |
| H-SHMM | 50.5   <b>56.1</b> | 52.9   <b>53.3</b> | 58.0   <b>59.6</b> | <b>52.9   <b>56.0</b></b> |

**Table:** Boundary UWS F-score results for the different SD models, using the MASS dataset (dpseg/attention-based). The result is the average over 5 runs.

# **CONCLUSIONS**

### Concluding...

- We update our pipeline for unsupervised word segmentation (UWS) from speech
  - We test in more languages, and we reach higher scores for Mboshi
  - We explore novel approaches for speech discretization
- Neural speech discretization approaches do not perform well in our pipeline
  - They produce inconsistent representation, difficult for downstream text-based approaches
- Extra annotation can be beneficial when the input is noisy!
  - The bilingual UWS model (access to translations) consistently outperforms monolingual UWS

# Thank you!

# **Questions?**















#### **Bibliography**

- [1] Joshi, et al. *The state and fate of linguistic diversity and inclusion in the NLP world.* ACL 2020.
- [2] Adda et al. Breaking the unwritten language barrier: The BULB project. SLTU 2016.
- [3] Godard et al. *Unsupervised word segmentation from speech with attention.* Interspeech 2018.
- [4] Goldwater et al. A Bayesian framework for word segmentation: Exploring the effects of context. Cognition. 2009.
- [5] Boito et al. Unwritten languages demand attention too! word discovery with encoder-decoder models. ASRU 2017.
- [6] Dunbar, Ewan, et al. *The zero resource speech challenge 2017.* ASRU 2017.
- [7] Ondel et al. Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery. Interspeech 2019.
- [8] Yusuf et al. A Hierarchical Subspace Model for Language-Attuned Acoustic Unit Discovery. ICASSP 2020.
- [9] Oord et al. Neural Discrete Representation Learning. NeurlPS 2017.
- [10] Baevski et al. vq-wav2vec: Self-supervised Learning of Discrete Speech Representations. arXiv, 2019.
- [11] Ondel et al. Variational inference for acoustic unit discovery. Procedia Computer Science 2016.
- [12] Godard et al. A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments. LREC 2018.
- [13] Boito et al. MaSS: A large and Clean Multilingual Corpus of Sentence-aligned Spoken Utterances Extracted from the Bible. LREC 2020.
- [14] Kamper and Nieker. Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks. arXiv, 2020.
- [15] S. Bird, Bootstrapping the language archive: New prospects for natural language processing in preserving linguistic heritage. Linguistic Issues in Language Technology, vol. 6, no. 4, 2011