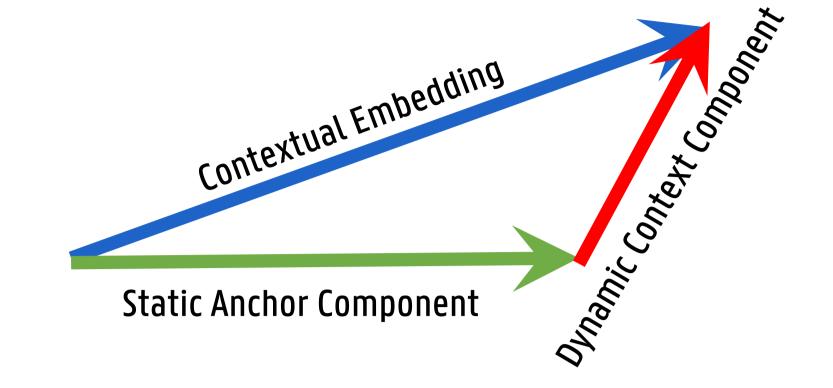


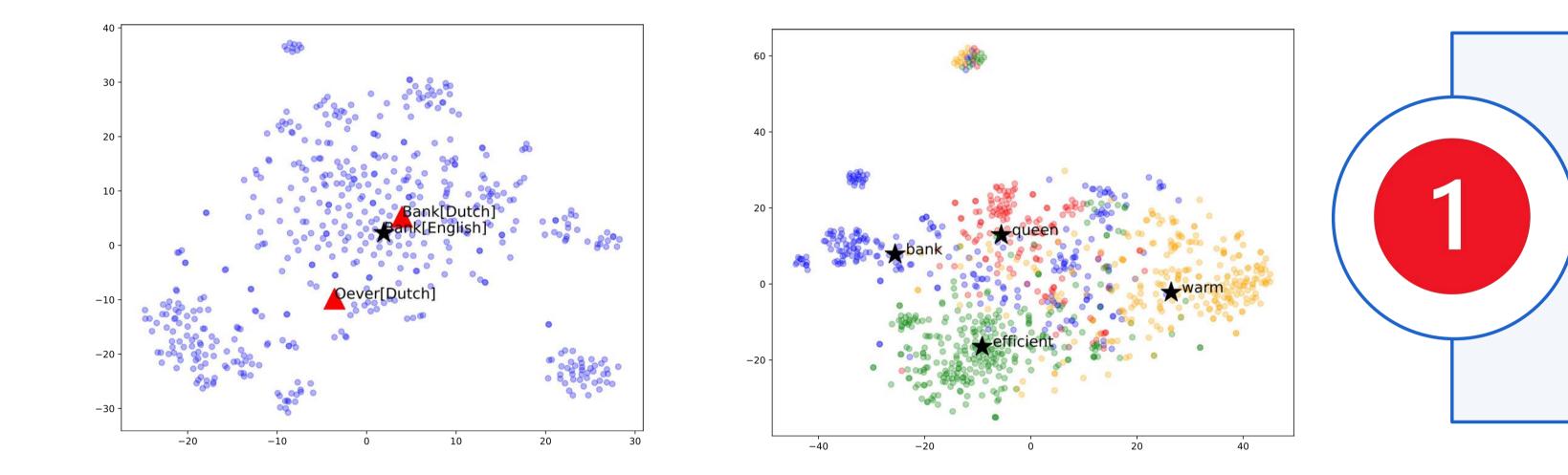
Investigating the Quality of Static Anchor **Embeddings from Transformers for Under-Resourced Languages**

Pranaydeep Singh, Orphée De Clercq, Els Lefever

Can BERT Embeddings be broken down into Static Anchor Components and then aligned for Cross-Lingual Inference?

Step 1: Verify the Static Anchor hypothesis for BERT Step 2: Evaluate the strengths of the Anchors in monolingual setting Step 3: Align Anchors from multiple languages, evaluate cross-lingual setting





Obtain Anchors by averaging for all contexts BERT models for EN, HI, ZH, RU, NL

- Contexts from 1 million Wikipedia sents
- Monolingual evaluation -> Sentiment lexicon for all 5 langs
- Test lexical strength instead of semantic understanding
- 2000 words for training, 400 for testing
- Outcome: FastText > Anchors

Language	FastText	Static Anchors
EN	0.8425	0.7575
HI	0.8125	0.5625
NL	0.7300	0.5750
RU	0.7575	0.7175
ZH*	0.5200	0.5780

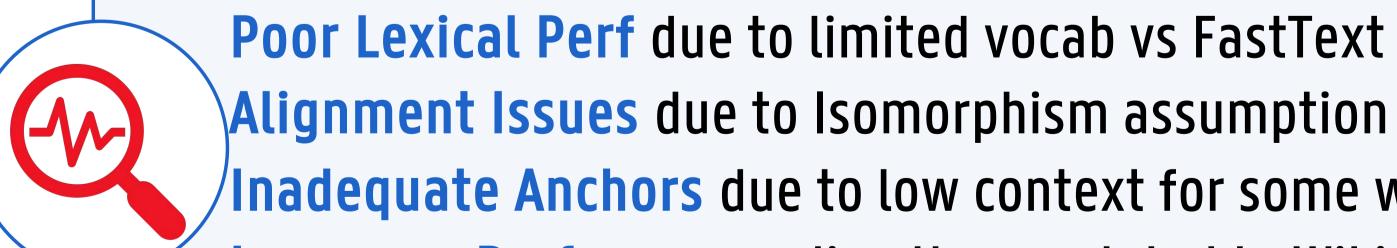
GHENT

UNIVERSITY

- Cross-lingual Setting 1: BLI \bullet
 - Eng-Target and Target-Eng setting from MUSE dicts
 - 2 Setups: Full Dict and 1K Pairs
 - Aligned with Vecmap Supervised setting
- Cross-lingual Setting 2: XNLI
 - Zero-Shot: Train on EN, Test on Target
 - Data only for HI, RU and ZH
 - No fine-tuning of LM unlike other SOTA \bullet approaches

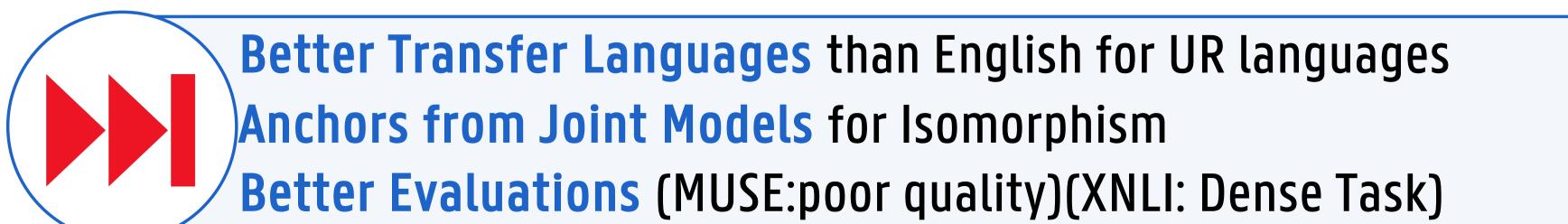
	EN-HI	HI-EN	EN-NL	NL-EN	EN-RU	RU-EN	EN-ZH	ZH-EN
FASTTEXT EMBEDDINGS WITH VECMAP								
Full Train Set	0.5679	0.7098	0.8604	0.8467	0.6465	0.8137	0.8325	0.549
1k Supervision	0.4864	0.5268	0.8234	0.7660	0.5525	0.7561	-	-
ALIGNED ANCHORS WITH VECMAP								
Full Train Set	0.4955	0.5994	0.6382	0.7350	0.6210	0.8043	0.8010	0.4510
1k Supervision	0.3620	0.2997	0.2300	0.3860	0.3276	0.5940	-	-

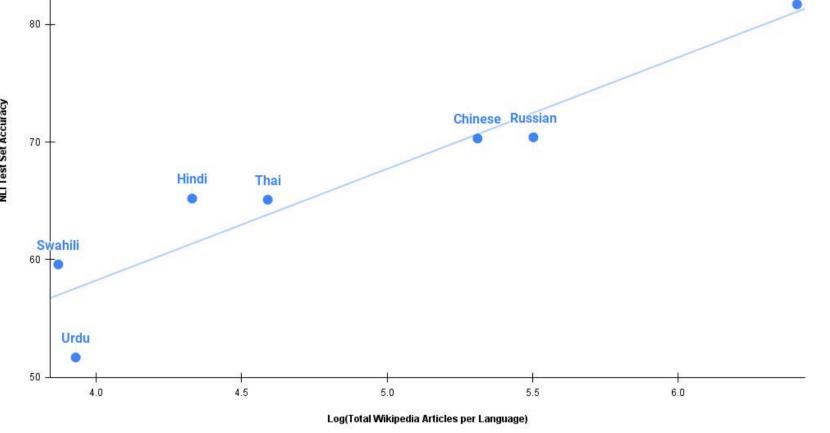
Model	HI	RU	ZH
XNLI Transfer Learning Baseline	0.563	0.578	0.588
mBERT (Devlin et al., 2019)	0.600	0.638	-
XLM (MLM) (Lample and Conneau, 2019)	0.657	0.731	0.719
MonoTrans (Artetxe et al., 2020)	0.660	0.704	0.703
RAMEN (Tran, 2020)	0.656	0.736	0.737
CL ELMo (Schuster et al., 2019)	0.548	-	-
CL-anchor-BERT	0.583	0.644	0.662



Trendline for series 1 R ² = 0.882	

Inadequate Anchors due to low context for some words Language Performance directly correlated to Wikipedia Data





References

Schuster, T., Ram, O., Barzilay, R., and Globerson, A. (2019). Cross-lingual alignment of contextual word embeddings, with applications to zero-shot dependency parsing. Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embeddings with (almost) no bilingual data. Artetxe, M., Labaka, G., and Agirre, E. (2018). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings.